
Fast, Memory-Efficient Construction of Voxelized Shadows

Viktor Kämpe Erik Sintorn Ulf Assarsson

Chalmers University of Technology

Figure 1: The left image shows a scene lit by the sun with precomputed voxelized shadows of resolution 2621443. Our novel algorithm
generates this shadow information in 38 seconds and compresses it to 48MB (vs. 100MB for the previous CPVS method). To the right is the
same scene lit by 165 spotlights with precomputed shadows, each with a resolution of 81923. The average build time for these CPVSs is 114ms,
and the average size is 0.5MB (vs. 128MB for a 16-bit shadow map). Evaluating shadows for all lights at 1920×1080 takes 3.2ms.

Abstract

We present a fast and memory efficient algorithm for generating
Compact Precomputed Voxelized Shadows. By performing much of
the common sub-tree merging before identical nodes are ever created,
we improve construction times by several orders of magnitude for
large data structures, and require much less working memory. We
also propose a new set of rules for resolving undefined regions,
which significantly reduces the final memory footprint of the already
heavily compressed data structure. Additionally, we examine the
feasibility of using CPVS for many local lights and present two
improvements to the original algorithm that allow us to handle
hundreds of lights with high-quality, filtered shadows at real-time
frame rates.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture;

Keywords: shadow, voxel, directed acyclic graph, real-time

1 Introduction

The current de-facto standard algorithm for rendering shadows from
distant light sources (e.g. the sun) in large open scenes is the Cas-
caded Shadow Maps (CSM) [Engel 2006; Zhang et al. 2006] ap-
proach. The idea is to split the current camera-view frustum into
several regions, or cascades, and to render a traditional shadow
map [Williams 1978] for each. Rendering, and performing look-ups
in, a shadow map is extremely fast on current graphics hardware, and
the CSM approach helps significantly in reducing under-sampling
artifacts that occur when a shadow map is sampled at a frequency
that is lower than the screen-sampling frequency. On the other hand,
the algorithm will, by design, sample the shadow-casting geome-

c©2015 ACM. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version is published in I3D’15 Proceeding of the 19th meeting of
the ACM Symposium on Interactive 3D Graphics and Games, Feb 2015.

try in distant regions very sparsely, which also leads to geometric
aliasing artifacts.

Recently, a different approach, called Compact Precomputed Vox-
elized Shadows (CPVS), has been suggested [Sintorn et al. 2014].
Here, a shadow map is rendered at a resolution that is high enough
to avoid geometric aliasing. This shadow map is then converted into
a Directed Acyclic Graph (DAG) that contains the voxelized, binary
shadow information for any point in the scene. The compact DAG is
generated by merging common sub-trees of an intermediate Sparse
Voxel Octree (SVO) representation. The DAG representation can
be two orders of magnitude smaller than the corresponding shadow
map at high resolutions. When the scene can be described entirely
by closed geometry, compression rates increase to three orders of
magnitude. The method can only be used to cast shadows from static
geometry, as the compression is done in a pre-compute pass, but
dynamic geometry can receive shadows, and high-quality filtered
look-ups are evaluated at a cost that is much lower than what would
be required to render and evaluate a CSM. Shadows from dynamic
geometry can then easily be supported using, for instance, CSM, at
an overall much lower cost than using CSM for the full scene.

However, usability of the method is highly limited by the time taken
to generate the CPVS. We present an elegant, non-intuitive, modifica-
tion to the algorithm to improve its performance. We show that much
of the common sub-tree merging can be performed before identical
nodes are even created. For scenes consisting of closed geometry,
where large regions inside objects need no shadow classification and
can be considered undefined, we will show (in Section 5) that this
results in a performance increase of approximately 200× for the ac-
tual DAG construction and a performance increase of approximately
20× for the full construction. For scenes with no closed geometry,
we still achieve an improved performance of approximately 2×.
Besides making CPVS an even more attractive alternative to shadow
maps or light maps, these performance improvements open up for
the possibility of creating the data structure during level load, or
even distributing the generation over a large number of frames for a
slowly moving dynamic light (e.g. the sun).

Our second contribution is a new set of rules for deciding on how
to resolve undefined regions. Our new method will set undefined
voxels to lit or shadowed in such a way that the number of unique
nodes are kept locally minimal. This results in an up to 3× reduction



in size of the final data structures for the tested scenes.

Additionally, we have explored how the algorithm performs for
small, local lights. Such lights will not require extreme resolutions,
but we will show that the CPVS can still offer data structures that
are one to two orders of magnitude smaller than the corresponding
shadow map at resolutions of e.g. 81923, making them an affordable
alternative to shadow maps also in scenarios where we have many
bounded lights (see Figure 1). In Section 4, we will show that
with two small but important improvements to the algorithm, they
can be combined with a simple light-culling technique to provide
shadows from hundreds of lights with high-quality filtering at real-
time framerates.

2 Previous Work

Rendering shadows in real time has been a hot research topic for
nearly four decades, and a complete overview is out of scope for
this article. Instead, we refer the reader to the book by Eisemann et
al. [2011]. In this section, we will briefly overview recent work that
is closesly related to our topic.

Precomputed and Compressed Shadows. Evaluating visibil-
ity between a view sample (of a pixel) and, e.g., a light-source is
often among the most time-consuming parts of generating an image
in real time, and it is common practice to pre-compute as much
of this work as possible (see the survey by Ramamoorthi [2009]).
Specifically, if the light and shadow-casting geometry can be consid-
ered static, the shadow information can be precomputed and stored
in a light map and then be queried with a simple texture lookup
while shading the view sample. Even though a number of lossy
compression schemes have been suggested for this type of data (see,
e.g. the works of Rasmusson et al. [2010] for a survey of hardware
accelerated light-map compression, or Lefebvre and Hoppe [2007]
for a well performing hierarchical compression scheme), the mem-
ory footprint can easily become unreasonable if high resolutions
are desired. These methods can also only support static shadow re-
ceivers and require a unique UV-parametrization for all objects. The
memory requirements are even more unsustainable if many lights
are to be considered.

Therefore, it can be preferable to pre-compute and store a represen-
tation of the shadow-casting geometry (e.g. a shadow map) instead.
For distant lights in a large open scene, this can be as simple as
rendering a large shadow map for all static geometry and using that
instead of real-time methods for distant geometry (see e.g. the pre-
sentation by Schultz [2014]). Since this information will usually be
very memory expensive, it is desirable to compress it, if this can be
done without introducing artifacts or too expensive decoding. The
methods suggested by Arvo and Hirvikorpi [2005] and by Sintorn et
al. [2014] both achieve high compression rates while allowing for
fast filtered shadow lookups.

Rendering With Many Lights. The problem of rendering scenes
with many light sources in real time has received much attention
lately, both by researchers and by the industry. A common scenario
in real-time applications is that there are many (hundreds or thou-
sands) of lights in the scene, but each light has a bounded influence
region. To achieve real-time frame rates in such scenes, the lights
must be culled efficiently. Examples of such techniques include
Tiled Shading [Olsson and Assarsson 2011], Forward+ [Harada et al.
2013] and Clustered Shading [Olsson et al. 2012]. These techniques
do not explicitly take shadowing into account, however. In a recent
paper by Olsson et al. [2014], real-time shadows for hundreds of
lights are shown to be feasible by carefully rendering only those
parts of the shadow maps that are required and only at a resolution

that gives an approximate one-to-one mapping between view sam-
ples and shadow-map samples. This latter restriction means that the
shadow-casting geometry might be gravely undersampled, but the
method shows promising results and is currently the best candidate
in a setting where all geometry is dynamic. This method would be
a good compliment to our algorithm, to handle shadows cast from
dynamic objects, while avoiding the large workload of the static
shadow casters.

3 Construction

In this section, we will briefly describe how the voxelized shadows
are computed. In Section 3.2, we will explain how we improve the
construction speed, and in Section 3.4, we will describe how we
improve the memory performance of the voxelized shadows. The
CPVS stores binary visibility information for every cell in a grid
that is a discretization of the light’s Normalized Device Coordinates
(NDC). Storing the shadows as a dense grid, or even an SVO, would
consume a prohibitive amount of memory at high resolutions. A
DAG, on the other hand, exploits the numerous similarities within
this grid and achieves much more efficient storage while maintaining
fast traversal of the data structure.

The DAG can be constructed top-down with visibility information
provided by a depth map of corresponding resolution [Sintorn et al.
2014]. During construction, a voxel at the finest resolution is clas-
sified as lit or shadowed by comparing its depth against the depth
map. To determine if a larger volume, for higher levels, is fully lit or
shadowed, the z-bounds of the volume is tested against a min-max
hierarchy of the depth map. Starting with the root volume, each of
its eight subvolumes is constructed recursively. The recursion ends
at the finest resolution, or when reaching a fully lit or shadowed
subvolume. During construction, nodes are inserted in a DAG, such
that a node describes its homogeneous subvolumes in a bit mask and
each non-homogeneous subvolume by a reference to another node.

When it is possible to determine that no shadow queries will be made
in a volume, e.g., because it is inside a closed object, the shadow
value of the volume can be chosen freely. This allows formation
of larger homogeneous regions, which can decrease the memory
consumption considerably.

After the top-down construction and insertion of nodes into the DAG,
identical nodes are merged to obtain the globally minimal number of
nodes. This is achieved by, for each level in bottom-up order, sorting
the nodes, removing all but one of identical nodes, and updating the
references of their parents to reference the unique nodes.

3.1 Workload

Typically, large volumes of the scene will be homogeneously lit
or shadowed and result in early termination in the DAG. These
regions require very little memory and are fast to construct. At
the boundaries between lit and shadowed space, however, we want
the accuracy of the finest voxel resolution. The shadow boundaries
will therefore dominate the memory consumption as well as the
construction time.

The shadow boundaries consist of the shadow-casting surfaces them-
selves and the boundaries in mid air between shadow casters (aligned
with the light direction). Closed objects enable a relaxation of the
boundaries around the shadow-casting surfaces and allow early termi-
nation of the DAG (and its construction), which saves both memory
and construction time.

We still need to resolve the shadow along the mid-air boundaries
to the finest resolution. Fortunately, a cross section of a mid-air



L
ightdirection

Sintorn et al. Our method

Lit

Shadowed

Enter depth
Farthest enter depth
Exit depth
Closest exit depth

Lit
Shadowed
Undefined

Figure 2: At the finest level, we classify the cells as either lit, shadowed or undefined from the enter and exit-depth maps (two left-most
figures). Our method of resolving undefined regions results in fewer unique visibility masks (two right-most figures).

boundary is identical for all depths between the shadow-casting
surfaces, which results in very few unique nodes in the final DAG.

With the mid-air boundaries not contributing to the final node count,
the final memory consumption scales as if we voxelized only the
shadow-casting surfaces. With the closed object optimization, the
final memory consumption of the DAG instead scales as if we only
voxelized the silhouettes of the shadow-casting surfaces, i.e., as a
one-dimensional curve instead of a two-dimensional surface. How-
ever, in the original algorithm, it is only the final memory consump-
tion that scales as the silhouettes. During construction, the number
of nodes to insert into the DAG is still proportional to the number of
non-unique voxels needed to represent the two-dimensional mid-air
boundary. In the next section, we will explain how we cull identical
nodes before they are inserted into the DAG, thereby making the
construction time proportional to the one-dimensional silhouettes,
as well.

3.2 Culling Construction of Identical Nodes

We start by requiring the recursive top-down construction of the
DAG to happen in Z-order, i.e., we complete processing of volumes
closer to the light before we continue to those farther away. For each
volume we process during construction, we first determine if it is
homogeneously lit or shadowed by testing its bounds against the
min-max depth hierarchy. When the volume is non-homogeneous,
we would normally construct a new node (describing the volume)
and insert it into the DAG. Before we construct a new node, we
first test if the non-homogeneous volume is identical to the adjacent
volume closer to the light (which is already represented in the DAG).
When they are identical, we just use the same node reference as
the adjacent volume and terminate the recursion. This culls both
construction and insertion of many nodes, just as homogeneous
volumes do. When the volume is neither homogeneous nor identical
to the adjacent volume, we need to recursively construct a new node
and insert it into the DAG.

Two volumes, adjacent in Z-order, are identical when neither of
them contain shadow-casting surfaces. To test if a volume is iden-
tical to the adjacent one, we compare the maximum depth of the
volume against the depth of the next shadow-casting surface. During
construction, we maintain a hierarchy of depths to the next shadow-
casting surface, which we update for each completed node. Along
with the depth, we keep the reference to the node we will re-use (the
last completed node for each entry).

For each new node we construct, the depth of the next shadow-
casting surface is calculated by the recursive construction. During
the recursion, for homogeneous subvolumes, we obtain this depth
from the min-max hierarchy, and at the finest level, we obtain this
depth from the depth map.

3.3 Finding Undefined Regions

Regions inside closed geometry will never be queried and can, there-
fore, hold an undefined value (shadowed or lit). We detect such
regions using two depth maps (see Figure 2). The first depth map,
the enter-depth map, is the depth at which light rays first enter
shadow casters, and we render it as an ordinary shadow map. The
second depth map, the exit-depth map, is the depth at which the
light rays first exit the closed geometry and reach the outside again.
All volumes that are between these two depth maps have undefined
shadow values, since they are inside a union of closed objects. To
find this exit depth, we iteratively depth peel front-facing and back-
facing triangles separately (i.e, to separate buffers), starting at the
enter depth. After each peel, we test whether we have exited the
closed geometry, which is equivalent to the next back-facing surface
being closer than the next front-facing surface. Peeling the front-
and back-facing triangles separately has two advantages. First, the
counter of the number of times we enter and exit a closed object
becomes implicit. Secondly, for the same number of processed
triangles and fragments, we advance two layers, instead of one.

3.4 Resolving Undefined Regions

We exploit undefined regions to reduce the overall memory con-
sumption. As Sintorn et al. [2014], we resolve undefined regions to
form homogeneous regions, wherever possible, by making nodes
containing lit and undefined regions fully lit, and nodes containing
shadowed and undefined regions fully shadowed. When a node
contains both lit and shadowed regions, it is not possible to form a
homogeneous region, and Sintorn et al. [2014] resolve undefined
regions to shadowed, but admit that this heuristic might miss com-
pression opportunities.

We propose a new way of resolving undefined regions, and we will
show (in Section 5) that it has a significant positive impact on the
final memory performance. This new method locally minimizes
the number of unique visibility masks between the near and the far
plane of the light frustum. It does not resolve the undefined regions
in a globally optimal way, but will locally minimize the number of
unique nodes in any 8× 8 texel tile, and is very fast to execute.

Prior to constructing the DAG, we consider each 8× 8 texel tile of
the depth map. In each tile, we have homogeneously lit slices from
the near plane until the closest exit depth, since no cell has to be
shadowed in this depth range (see Figure 2). After the farthest enter
depth, we will have homogeneously shadowed regions, since there
will be no lit cells after this depth. For depths between the fully lit
and fully shadowed regions, we need to store a minimal number of
visibility masks that describe the visibility transitions.

At the closest exit depth, the slice cannot be set to fully lit and we
need a visibility mask. We create a visibility mask that has shadow



Resolution 4K3 8K3 16K3 32K3 64K3 128K3 256K3

No culling non closed total 434ms 1.7s 6.5s 24.1s 92.7s 357.9s 1398.8s
insert/merge 417ms 1.7s 6.4s 23.5s 90.3s 348.6s 1362.4s

closed total 235ms 695ms 2.5s 9.1s 35.8s 139.5s 550.5s
insert/merge 146ms 580ms 2.3s 8.4s 33.2s 130.1s 515.2s

Culling non closed total 300ms 1.2s 4.5s 16.3s 61.5s 235.4s 906.4s
insert/merge 283ms 1.2s 4.4s 15.7s 59.2s 226.1s 870.1s

closed total 113ms 185ms 377ms 1.1s 3.3s 10.9s 38.1s
insert/merge 25ms 72ms 151ms 347ms 763ms 1.6s 3.3s

Table 1: Construction times for CLOSEDCITY (our implementation) with and without culling construction of identical nodes.

in as many cells as possible by setting all bits corresponding to cells
that are beyond their corresponding enter depth. This visibility mask
can then be re-used for all depths until the closest exit depth of the
remaining cells. At the end of this depth range, we need another
transition to a new visibility mask (with more shadowed cells). We
repeat this process of forming visibility masks until we reach the
fully shadowed region or the far plane.

We compute all visibility masks for each 8×8 texel tile upfront. For
each visibility mask, we also keep the depth to which the mask can
be re-used. For non-closed geometry, we use the enter depth also as
the exit depth, but otherwise follow the same procedure. Since each
block is computed separately, this can be performed in parallel on
the GPU. Besides reducing the computation times, this method also
reduces the amount of memory transferred to the host.

After this step, the DAG is constructed as described above, except
that we now never have to query the finest level of the min-max
depth hierarchy, and instead query the visibility masks of the tile.

4 Many Local Lights

We have explored the viability of using Compact Precomputed Vox-
elized Shadows in scenes containing many local, bounded lights,
rather than a single distant light. Specifically, we have modified
the CLOSEDCITY scene to contain hundreds of spotlights with far
attenuation and cut-off, to evaluate whether such a scene can be
efficiently lit using CPVS, both in terms of memory and rendering
performance. The main differences from previous use cases, apart
from having to handle many lights efficiently, are that these lights
will have a perspective projection with a large field-of-view and that
the extreme resolutions used for distant lights are not required, or
even desirable, in this setting.

While Sintorn et al. [2014] show that compression rates increase sig-
nificantly with increasing shadow resolution, they still achieve com-
pression rates of about 10×, for non-closed geometry, and around
100× for closed geometry, when the original shadow maps are
as small as 4096 × 4096. With the added compression that our
improved algorithm obtains, and since they can now be built in a
reasonable time, it is possible to use precomputed, high-resolution,
CPVSs for hundreds of lights while staying well within a reasonable
memory budget. We will show (in Section 5) that these data struc-
tures can then be efficiently queried with large PCF filters to achieve
high-quality shadows in real-time framerates.

Many Lights In any performance-critical application where many
bounded lights are used, it is important to perform culling to avoid
testing all lights against all pixels. We have chosen to implement the
Tiled Shading approach [Olsson and Assarsson 2011], where a light
is assigned to a list per screen-space tile, if the light’s bounding vol-
ume intersects the tile’s (three-dimensional) bounding volume. This
approach can cull many more lights, but to further improve culling

before the actual shadow-lookups are made, it would probably be
beneficial to employ the Clustered Shading approach [Olsson et al.
2012]. The choice of light-culling technique is orthogonal to our
method.

When light culling has been performed, we simply start one thread
per pixel (in CUDA) and loop through the list of assigned lights.
Each entry in this list contains the light’s model-view-projection
matrix and a pointer to the appropriate CPVS. The filtered visibility
value is then calculated and stored in a list for each pixel.

Perspective Lights When we have few discrete depth values in
a CPVS (e.g. 4096), we have to distribute them carefully. With
large field-of-view point lights, a plain discretization of the lights
NDC coordinates will result in poor depth precision close to the far
plane. Our solution is similar to that of Olsson et al. [2012], but
while their goal is to achieve as cubical voxels as possible, our goal
is to distribute N depth values between the near and far plane to get
a constant ratio between a voxel’s height and depth. Therefore, we
calculate a voxel’s depth value, z, from the lights view space as:

z =

⌊
N

log zvs
near

log far
near

⌋
(1)

Another issue with a high field-of-view is that the amount of biasing
required is highly dependent on where within the frustum the view
sample lies. As in the paper by Sintorn et al. [2014], we bias the
lookup point by moving one half filter width in the direction of the
normal. In their implementation, however, this distance was roughly
estimated while rendering the G-Buffer, using derivatives of the
light’s NDC coordinates. This approach is not directly available to
us, as we must calculate a bias per light. Instead, the view sample’s
normal is sent along to the look-up kernel and transformed, for each
light, by the light’s model-view-projection matrix. The biasing is
then performed in integer coordinates after the voxel coordinates
have been calculated. This approach allow us to use a minimal bias
at any position in the frustum.

5 Results

We have performed all measurements on a desktop computer with
an Intel Core i5 2500K CPU, 16 GB DDR3 1333MHz RAM, and
an NVIDIA GTX Titan GPU connected via PCI Express 2.0 x16.

5.1 Construction

The construction is partially done on the GPU and partially on the
CPU and consists of the following steps:

• Render depth maps (OpenGL).

• Compute the min-max hierarchy and visibility masks (CUDA).



• Transfer the min-max hierarchy and visibility masks to host
(PCIe).

• Insert and merge nodes in the DAG (CPU).

We render the enter-depth map and the exit-depth map in OpenGL
and use them to compute the visibility masks (with corresponding re-
use depth) and the min-max hierarchy in CUDA. We only compute
the min-max hierarchy up to an entry per 8 × 8 texel tile, as finer
resolutions are not needed after the construction of visibility masks.
The visibility masks and min-max hierarchy are then transferred
to the host, and we perform construction, insertion, and merging
of DAG-nodes on the CPU. Since rendering depth maps of the full
resolution is infeasible, we perform construction for one 8K×8K
texel region at a time.

ClosedCity FractalL.

Res. [MB] ratio [MB] ratio
new old new old

4K3 0.83 1.18 1.43 0.44 0.76 1.72
8K3 1.89 2.82 1.49 0.84 1.59 1.90

16K3 3.96 6.25 1.58 1.60 3.34 2.08
32K3 7.70 12.87 1.67 3.05 6.98 2.29
64K3 14.28 25.43 1.78 5.76 14.36 2.49

128K3 26.15 49.72 1.90 10.85 29.30 2.70
256K3 48.04 100.05 2.08 20.35 60.99 3.00

Table 2: Resulting memory consumption with the closed object
optimization, comparing the new method with Sintorn et al. [2014].

We have measured construction times for a single large directional
light in three scenes. The scenes and lights are the same as those
used in the measurements by Sintorn et al. [2014]. One consists
of non-closed geometry (NECROPOLIS), while the other two are
entirely built from closed geometry (CLOSEDCITY and FRACTAL-
LANDSCAPE). All scenes are built with resolutions from 4K3 to
256K3. Without the re-use of already constructed nodes, the con-
struction time is dominated by the insertion and merging of nodes
(see Table 1). For non-closed construction, and when re-using nodes,
the time for insertion and merging is approximately halved, since we
now only have to process nodes along the shadow-casting surfaces.
For closed construction, re-using nodes saves the same amount of
processing as it does for non-closed construction (in absolute terms),
but as we do not process the shadow-casting surfaces, the insertion
and merging work is decreased by up to two orders of magnitude.

For non-closed construction, the total construction time is still dom-
inated by the insertion and merging of nodes (see Table 3). For
closed construction, however, the time for insertion and merging
only amounts for less than a fourth of the total construction time at
4K3 resolution. This proportion decreases further with increasing
resolutions, as the amount of voxels around the silhouette grows
by 2× per increase in resolution (while the rest of the construction
grows by 4×). A further breakdown of the construction time shows
that the dominating step is the detection of undefined regions (the
depth peeling of the exit-depth map).

Our construction times are more than two orders of magnitudes
faster than those reported by Sintorn et al. [2014] (see Table 4), but
they also state that the construction speed was not their primary
concern.

5.2 Memory Consumption

We have measured the final memory consumption for the two scenes
of closed geometry, with and without the new method of resolving

Resolution 4K3 16K3 64K3 256K3

non-closed 300ms 4.5s 61.5s 906.4s
Enter depth map 4ms 20ms 291ms 4.5s
Visibility masks 2ms 29ms 482ms 7.8s

Min-max 1ms 1ms 7ms 119ms
Transfer 7ms 90ms 1.4s 22.6s

Insert nodes 107ms 1.7s 22.1s 339.8s
Merge nodes 176ms 2.7s 37.2s 530.4s

closed 113ms 377ms 3.3s 38.1s
Enter depth map 5ms 19ms 271ms 4.4s
Exit depth map 78ms 176ms 1.8s 23.0s

Visibility masks 1ms 12ms 181ms 2.9s
Min-max 1ms 1ms 7ms 111ms
Transfer 2ms 16ms 245ms 3.9s

Insert nodes 10ms 63ms 312ms 1.4s
Merge nodes 15ms 88ms 451ms 2.0s

Table 3: Breakdown of construction timings for CLOSEDCITY. The
most time consuming parts are highlighted in red.

undefined regions. The new method compresses the final memory
consumption of the CPVSs by an additional 1.4–3.0× (see Table 2).

5.3 Rendering With Many Lights

In order to test the viability of using CPVSs in a scene with many
bounded lights, we have modified the CLOSEDCITY scene (used for
measurements by Sintorn et al. [2014]) to contain 165 spot-lights,
each of which lights a small portion of the scene. For each spotlight,
we built a CPVS at resolution 81923, which results in sufficiently
sharp shadows for all lights, with a 9 × 9 PCF filter. Figure 3
shows how the construction times and final data-structure sizes are
distributed over the different lights. The sizes of the data structures
vary between 0.3 and 1.7 MB, for a total of 96MB. The build times
are mostly dependent on the depth complexity and the amount of
geometry that intersects the lights’ frustums. The total build time is
19 seconds.

Construction Time (ms) Size (MB)

Figure 3: Distribution of final data structure sizes and construction
times for the 165 CPVSs in CLOSEDCITY.

Figure 4 shows timings of different parts of the algorithm, along
with a curve showing the average number of lights per pixel for each
frame. The sequence was rendered at a resolution of 1920× 1080.
The first two steps are generating the bounding boxes for each 8× 8
screen space tile and then intersecting the lights’ bounding volumes
with these to produce a light list per tile. This is done in two CUDA
passes and takes fairly constant time. The next step, calculating
shadows, is highly dependent on how many lights are overlapping
the tiles in the current frame. The final step, shading, is a full-screen
fragment-shader pass, where each pixel loops through the light list



Resolution 4K3 8K3 16K3 32K3 64K3 128K3 256K3

NECROPOLIS non-closed 209ms 720ms 2.6s 9.6s 34.5s 126.6s 470.4s
CLOSEDCITY non-closed 300ms 1.2s 4.5s 16.3s 61.5s 235.4s 906.4s

closed 113ms 185ms 377ms 1.1s 3.3s 10.9s 38.1s
FRACTALLANDSCAPE non-closed 264ms 1.0s 4.0s 15.2s 57.6s 220.7s 874.2s

closed 56ms 91ms 192ms 570ms 2.0s 7.1s 25.3s
Sintorn et al. [2014] closed 2.0s 18.0s 68.0s 256.0s 1055.0s 5520.0s

Table 4: Total CPVS construction times for three scenes with and without detection of undefined region inside closed geometry. The last row
contains the construction times of Sintorn et al. [2014].

of the tile it resides in and accumulates the contribution of each
affecting light.

Each shadow lookup returns a filtered visibility using the equivalent
of a 9 × 9 PCF filter. We replace the top six levels of each CPVS
with a small grid of pointers, which costs an aditional 128kB per
light, for a small performance improvement. At worst, the time for
calculating shadows for all pixels is 9ms.

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

L
ig

ht
s

Pe
rP

ix
el

M
ill

is
ec

on
ds

Frame
Shading (ms) Calculate Shadows (ms)
Build Light Lists (ms) Build Tile Bounding Boxes (ms)
Average Lights Per Pixel (LPP)

Figure 4: The measured performance in a flythrough animation of
the CLOSEDCITY scene. The dashed line is the average number of
lights that are assigned to each tile in the frame.

6 Conclusion And Future Work

We have presented an algorithm for generating Compact Precom-
puted Voxelized Shadows which improves the construction speed of
up to two orders of magnitude, and increases the compression by
up to 3×. This makes construction much more feasible to perform
in runtime, e.g., during level load or amortized over several frames.
We show that CPVSs for hundreds of spotlights, at a resolution of
8K3, can be constructed at around 100ms and 0.5MB per light. The
memory consumption is about 100 times lower than a corresponding
shadow map. We also suggest a novel transform from the light’s
NDC into voxel space, to maintain high depth precision when the
light’s frustum is not near-orthographic.

For closed geometry, the construction bottleneck is no longer the
insertion and merging of nodes, but the identification of undefined
regions. In the future, we would like to explore alternative methods
of identifying these undefined regions.

Acknowledgements

The NECROPOLIS scene is distributed with the Unreal Development
Kit by Epic Games. The FRACTALLANDSCAPE scene was generated
using the software World Machine. The NVIDIA GTX Titan GPU
used for this research was donated by NVIDIA. This work was

supported by the Swedish Foundation for Strategic Research under
Grant RIT10-0033.

References

ARVO, J., AND HIRVIKORPI, M. 2005. Compressed shadow maps.
Vis. Comput. 21, 3 (Apr.), 125–138.

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A.K. Peters.

ENGEL, W. 2006. Cascaded shadow maps. In ShaderX5: Advanced
Rendering Techniques, T. Forsyth, Ed., Shaderx series. Charles
River Media, Inc.

HARADA, T., MCKEE, J., AND YANG, J. C. 2013. Forward+:
A step toward film-style shading in real time. In GPU Pro 4,
W. Engel, Ed. CRC Press, 115–135.

LEFEBVRE, S., AND HOPPE, H. 2007. Compressed random-access
trees for spatially coherent data. In Proceedings of the 18th
Eurographics Conference on Rendering Techniques, Eurographics
Association, EGSR’07, 339–349.

OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. Journal
of Graphics, GPU, and Game Tools 15, 4, 235–251.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clus-
tered deferred and forward shading. In HPG ’12: Proceedings of
the Conference on High Performance Graphics 2012.

OLSSON, O., SINTORN, E., KÄMPE, V., BILLETER, M., AND
ASSARSSON, U. 2014. Efficient virtual shadow maps for many
lights. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, ACM.

RAMAMOORTHI, R. 2009. Precomputation-based rendering. Found.
Trends. Comput. Graph. Vis. 3, 4 (Apr.), 281–369.

RASMUSSON, J., STRÖM, J., WENNERSTEN, P., DOGGETT, M.,
AND AKENINE-MÖLLER, T. 2010. Texture compression of
light maps using smooth profile functions. In Proceedings of the
Conference on High Performance Graphics, HPG ’10, 143–152.

SCHULZ, N., 2014. The rendering technology of ryse.

SINTORN, E., KÄMPE, V., OLSSON, O., AND ASSARSSON, U.
2014. Compact precomputed voxelized shadows. ACM Trans.
Graph. 33, 4 (July), 150:1–150:8.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12 (August), 270–274.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In Proc.
Virtual Reality Continuum and Its Applications, ACM, VRCIA
’06, 311–318.


